The laboratory work 12
Wumpus world description
In general, you can take actions that change the direction you are facing, move forward and either pick things up or shoot and arrow. Once you have scored some points and returned to your home, you can also leave the game.
Moves that change your orientation: Up, Down, Left, Right
The move that changes your position: Step
The move that allows you to exit the board: Exit
Actions that change the world aside from your position: PickUp, Shoot
You invoke these actions by calling the function take_action (in the file updatewumpus.py) that takes the name of a world and a move. It returns a list of strings that describes the current perceptions that are available to you: (smell, air, glitter, bump, scream, location, orientation, status, score).
The possible values of these perceptions are:
Smell – clean|nasty
Air – calm|breeze
Glitter – bare|glitter
Bump – no_bump|bump
Scream – quite|scream
Location – unique identifier for current square
Orientation – the direction you are facing
Status – living|dead|won
Score – current score

Before you start the game, you need to initialize a “world”. You do this by calling initialize_world, a function that has no arguments. This returns the name of a new world that you need to use when calling take_action. This function builds a folder (“WumpusWorldDataFolder”) where the world data will be saved. It does not delete any of the world it builds, so you might want to clear this folder occasionally.
The code for building the world of Wumpus is represented below.
This is the file – updatewumpusNowWithRocks.py
	import random, json, os

We are assuming the following moves:

Moves that change your orientation
Up
Down
Left
Right

A move that changes your position
Step

The move that allows you to exit the board
Exit

Other actions that change the world aside from your position
PickUp
Shoot

The function update will return a vector of strings that represent:

(smell, air, glitter, bump, scream, location, orientation, status, score)
The possible values are:

Smell - clean|nasty
Air - calm|breeze
Glitter - bare|glitter
Bump - no_bump|bump
Scream - quiet|scream
Location - unique identifier for current square
Orientation - the direction you are facing
Status - living|dead|won
Score - current score

You get precept vectors by calling take_action with the name of your world and the
move you want to take.

def take_action(world_token,move):

 world = get_world(world_token)
 location = world["location"]
 orientation = world["orientation"]
 points = world["points"]
 status = world["status"]
 arrows = world["arrows"]

 print "\n*********************************\n"

 if status == "dead":
 print "You are dead. Start a new game"
 return
 elif move == "Exit":
 update = update_location(world, location, orientation)
 if world["location"] != "Cell 11":
 print "You need to get back to Cell 11 to exit"
 elif world["points"] == 0:
 print "You need to score some points in order to exit"
 else:
 update[7] = "won"
 elif move == "Toss":
 if world["rocks"] <= 0:
 print "You are out of rocks"
 return
 else:
 world["rocks"] = world["rocks"] - 1
 print "Tossing a rock. You have " + str(world["rocks"]) + " left."
 store_world(world_token,world)
 cell_state = world[world[location][orientation]]
 if cell_state["Pit"] is True:
 return "Quiet"
 else:
 return "Clink"
 elif move == "Step":
 print "Taking a step"
 new_location = world[location][orientation]
 if new_location == "Void":
 print "You bumped your head on the edge of the world."
 update = update_location(world, location, orientation)
 update[3] = "bump"
 else:
 print "Moving to " + str(new_location)
 update = update_location(world, new_location, orientation)
 world["location"] = new_location
 elif move in["Up","Down","Left","Right"]:
 print "Turing to face " + move
 update = update_location(world, location, move)
 world["orientation"] = move
 elif move == "PickUp":
 print "Trying to pick up gold"
 if got_gold(world, location):
 print "You've picked up some gold!"
 print "You get 1000 more points!"
 update = update_location(world, location, orientation)
 update[2] = "bare"
 world[location]["Gold"] = False
 world["points"] = world["points"]+1000
 else:
 print "There is no gold here!"
 update = update_location(world, location, orientation)
 elif move == "Shoot":
 print "Trying to shoot the Wumpus"
 if world["arrows"] <= 0:
 print "You are out of arrows"
 elif wumpus_in_sight(world,location, orientation):
 print "You killed the Wumpus!"
 print "You get 100 more points!"
 wumpus_location = where_is_the_Wumpus(world,location,orientation)
 world[wumpus_location]["Wumpus"] = False
 world["points"] = world["points"]+100
 else:
 print "You missed the Wumpus!"
 update = update_location(world, location, orientation)
 world["arrows"] = world["arrows"] - 1
 print "Perception = (" + ", ".join(update) + ")"
 world["status"] = update[7]
 store_world(world_token,world)
 update[8] = world["points"]
 return update

Update_location figures out the perceptual elements associated with a location by
checking for gold, pits and the Wumpus

def update_location(world,location,orientation):
 location_info = world[location]
 baseline = ["clean","calm","bare","no_bump","quiet",location, orientation, "living", str(world["points"])]

 if got_gold(world, location):
 print "There is a lovely glitter in the room"
 baseline[2] = "glitter"

 if got_breeze(world, location):
 print "There is a breeze running through this room"
 baseline[1] = "breeze"

 if got_smell(world, location):
 print "There is a nasty smell in here"
 baseline[0] = "nasty"

 if location_info["Wumpus"] is True:
 print "You got killed by the Wumpus and it was shockingly painful"
 baseline[7] = "dead"

 elif location_info["Pit"] is True:
 print "You fell into a pit and died a slow and scary death"
 baseline[7] = "dead"

 return baseline

Various tests to figure out precept list.

Is there gold in this cell?

def got_gold(world, location):
 return world[location]["Gold"]

Do any of the adjacent cells have Pits in them?

def got_breeze(world,location):
 for x in world[location]["Next"]:
 if world[x]["Pit"]:
 return True
 return False

Do any of the adjacent cells have the Wumpus?

def got_smell(world,location):
 for x in world[location]["Next"]:
 if world[x]["Wumpus"] is True:
 return True
 return False

Is there are Wumpus in the agent's line of sight?

def wumpus_in_sight(world, location, orientation):
 next_location = world[location][orientation]
 if next_location == "Void":
 return False
 elif world[location]["Wumpus"] is True:
 return True
 else:
 return wumpus_in_sight(world, next_location, orientation)

Where is the Wumpus in the agent's line of sight?

def where_is_the_Wumpus(world, location, orientation):
 next_location = world[location][orientation]
 if world[location]["Wumpus"] is True:
 return location
 else:
 return where_is_the_Wumpus(world, next_location, orientation)
look_ahead

def look_ahead(world_token):
 world = get_world(world_token)
 return world[world["location"]]["Next"]

Build out the dictionary that makes up the simple world that we have been looking at

def build_world(gold, wumpus, pits):
 layout = {}
 height = 4
 width = 4
 for x in range(1,width+1):
 for y in range(1,height+1):
 new_cell = {}
 new_cell["Up"] = "Void"
 new_cell["Down"] = "Void"
 new_cell["Left"] = "Void"
 new_cell["Right"] = "Void"
 new_cell["Wumpus"] = False
 new_cell["Pit"] = False
 new_cell["Gold"] = False
 new_cell["Next"] = []
 if y < 4:
 new_cell["Up"] = "Cell " + str(x) + str(y+1)
 new_cell["Next"].append(new_cell["Up"])
 if y > 1:
 new_cell["Down"] = "Cell " + str(x) + str(y-1)
 new_cell["Next"].append(new_cell["Down"])
 if x < 4:
 new_cell["Right"] = "Cell " + str(x+1) + str(y)
 new_cell["Next"].append(new_cell["Right"])
 if x > 1:
 new_cell["Left"] = "Cell " + str(x-1) + str(y)
 new_cell["Next"].append(new_cell["Left"])
 layout["Cell "+str(x)+str(y)] = new_cell
 layout[wumpus]["Wumpus"]=True
 print "There is a Wumpus in cell " + wumpus + "."
 layout[gold]["Gold"]=True
 print "There is Gold in cell " + gold + "."
 for cell in pits:
 layout[cell]["Pit"]=True
 print "There is a Pit in cell " + cell + "."
 print
 return layout

In order to have a persistant world, we are going to store and update it as the
game progresses.

We first initialize the state of the world and return a random token to the user
so that they can refer to the world that they are playing in

def intialize_world():
 world_name = "Wumpus" + str(random.randint(0,10000))
 print "\n*********************************\n"
 print "Initializing your new Wumpus world!"
 print "Your new world is called: "+ world_name
 if not os.path.exists("WumpusWorldDataFolder"):
 os.makedirs("WumpusWorldDataFolder")
 world=build_world("Cell 32", "Cell 13", ["Cell 31","Cell 33","Cell 44"])
 world["location"] = "Cell 11"
 world["orientation"] = "Right"
 world["status"] = "living"
 world["points"] = 0
 world["arrows"] = 1
 world["rocks"] = 5

 print "You are starting in Cell 11, looking to the Right."
 print "You are starting with 0 points, " + str(world["arrows"]) + " arrow(s)."
 print "You have " + str(world["rocks"]) + " rocks."
 print "You are alive."
 with open("WumpusWorldDataFolder/"+world_name+".json", 'w') as worldfile:
 json.dump(world, worldfile)
 worldfile.close()
 return world_name

In order to have a persistant world, we are going to store and update it as the
game progresses.

We first initialize the state of the world and return a random token to the user
so that they can refer to the world that they are playing in

def intialize_my_world(gold,wumpus,pits):
 world_name = "Wumpus" + str(random.randint(0,10000))
 print "\n*********************************\n"
 print "Initializing your own Wumpus world!"
 print "Your new world is called: "+ world_name
 if not os.path.exists("WumpusWorldDataFolder"):
 os.makedirs("WumpusWorldDataFolder")
 world=build_world(gold,wumpus,pits)
 world["location"] = "Cell 11"
 world["orientation"] = "Right"
 world["status"] = "living"
 world["points"] = 0
 world["arrows"] = 1
 world["rocks"] = 5

 print "You are starting in Cell 11, looking to the Right."
 print "You are starting with 0 points, " + str(world["arrows"]) + " arrow(s)."
 print "You have " + str(world["rocks"]) + " rocks."
 print "You are alive."
 with open("WumpusWorldDataFolder/"+world_name+".json", 'w') as worldfile:
 json.dump(world, worldfile)
 worldfile.close()
 return world_name

At the beginning of each turn, we load the last state of the world so we know
what precepts to return in response the actions.

def get_world(world_name):
 with open("WumpusWorldDataFolder/"+world_name+".json") as worldfile:
 world = json.load(worldfile)
 worldfile.close()
 return world

As things change in response to actions, we update and store the world in response to
actions that have been taken

def store_world(world_name,world):
 with open("WumpusWorldDataFolder/"+world_name+".json", 'w') as worldfile:
 json.dump(world, worldfile)
[bookmark: _GoBack] worldfile.close()

